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On the basis of Pontriagin’s maximum principle we establish the structure ofthe 
optimal control and of the optimal trajectories, using the properties of the sys- 
tem being analyzed. We propose a rule for the construction of the program con- 
trol satisfying the maximum principle. In the case when the terminal state Iies 
outside some bounded region we prove that the rule mentioned determines the 
optimal control and permits us to solve the synthesis problem. 

1, Statement of the problem. Let the motion of a point in the xv-plane 
be described by the system of equations 

x’=r,7oostp, y’=usintp, v*=+Q, v’=Iysr+ (3.X) 

where Q, = cp (i!) is the angle between the z-axis and the direction of the velocity 
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vpa v Ul = w, y3, & and Ka are given positive constants, while u, = y (t) 
= us (t) are measurable control functions satisfying the conditions 

l%l < 1, !u,l < 1 (1.2) 

In this paper we solve the problem on the fastest hitting of the representative point 
(x, Y, rp, U) onto the manifold (Z = 0, g = 0) from a given initial state (zs, y,, 
% u& We assume that v_&c, where C= GOIIS~ > 0. -Under this condition and 
with K&r < 0,i we can prove the existence of a positive number a = a (c) such 
that along a trajectory which appears to be optimum, we have v (t) > a. Then, the 
optimal control existence theorem is valid [I,]. 

By a trajectory of system (1. l), (1.2) it is expedient to understand the projection of 
the phase trajectory onto the zrg-plane and carry Gut the investigation in this plane. 
The origin 0 = (0, 0) on this plane corresponds to the manifold (z = 0, g = 0) . 
In the case given the Hamilton function H has the form [l] 

H = $1~ ona cp 4 %u ain IP + 9s t GUI + S&us (1.3) 

where the auxiliary functions +,, tps, tps, $, satisfy the system of Eqs. (1.4) and the 
transversality conditions (1.5) 

(2’ is the instant of hitting onto the origin). Using the first two equations of system 
(l.l),we have 9r = 

Cl, $2 = $8, ps' = c,y' - c& (1.6) 

Hence,allowing for the boundary conditions(l.5) and 2 (T) = y (2’) = 0, we have 

@8 = %Y - cy. In the z#-plane 

ClY - t&cc = 0 (I.71 

is the equation of a straight line which we call the switching line, We subsequently con- 
sider the coefficients of this straight line as normalixed: c, = cos 0 and es = sin 8 
(0 is the angle between the z-axis and the vector (cl, es)). From (1.4) and (1.3) it 
follows that the equation for qr (t) can be reduced to the form 

$i = _ d’ K,%@s.Z++ U-l [H - 2U GGS (Cp - (+)I (1.8) 

According to the maximum principle the optimal control MiSfieS the relations 

% = sip 9S, $S # 0, US = sign 94, $4 # 0 (1.9) 

We note that certain aspects of the optimality of the motion of system (1.1) were touched 
upon in [2]. The problem being examined was solved in [3] for v = Gonst and in a 
somewhat different formulation, in [4]. 

P. C6rtrfn propertier of ryrtun (id), (1.4). 1’ l Let ** (t) = 0, 
t E it,, tal, & < tb, i.e. the motion takes place along the straight line (1.7). 
Then from (1.1) it follows that u, (t) = 0, t E, k, hb 

2’. If at point (z (t,,), y (tJ) the velocity vector v (td is directed toward the 
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origin, then the optimal trajectory for t > t, is a straight line joining this point with 

the origin, while the optimal control is (r.+’ = 0, ut = 1). 
3”. The equalities 

EV - Z&u, (CIX + cy) - vK,rp,u, = comtl (2.1) 

&wP, - 211;11, (C$ + cdy) + dcos (a, - e) = con& G.2) 

hold on the intervals of constancy of the control functions u, and us and of the Hamif- 
ton function H 

Suppose that at some instant t, the~function $, (ta) = tp, (T) = 0, s@, (t) > 0, 
t E (t,, Z’), while at an instant t, the function g, (t,J I 0, 9, (t) < 0, t E 
(ts, ts) ; then from (2.1) and (1.5) follow the relations 

u (t) K&* (t) == H (u (t) - u (T)) - 2& (es: 0) + %Y (G) (2.3) 

t E (tat T1 

$3 ($J + CaY 0s) ( 0 

lJ (W* t% 0) I = R (u (t) - Y (t, - 0)) + 2& (w + WI I’ h-h 

t E @st t$ 

4”. Let the control functions u, and us be constant on the interval [t,, t& taking 
the values f 1. Then 

Y - Y (Cx) = b [nsK,%, (2 sin 9, - K1zq4, cos cp)]ltlf (2.6) 

X - X (&J = b [vSR&, (2COS 9 + K-‘urus sin cp)]it,’ 

n 6) = u f&J exp (J&us (cp (t) - cp !a)) 

u (0 = u (CX) + &us (r - ta), t E k, tpJ 
K = K&1-1, b = (4 + K-‘)-’ 

Hence we see that the corresponding trajectories are logarithmic spirals. 
5’. Let us consider the vq-plane to each point of which corresponds a radius-vector 

of length u turned through an angle cp relative to some fixed z -axis. On the vcp-plane 
the relations 

u cos (SD - 0) = H, 2v COS (cp -0)=H (2.7) 

are the equations of straight lines orthogonal to the straight line cp = 6. From (1.3) 
and (1.5) it follows that the point (v (T), q (T)) is on the first straight line in (2.7). 
The second straight line divides the vcp-plane into two halfplanes i&, ns. Let the 
quantity N - 2u 00s (cp - 0) be negative in halfplane II, and positive in &, 

Lemma 2.1. As the representative point moves in the halfplane n, the function 
9, (t) decreases, while in I?, it can change sign only from minus to plus. 

The validity of the Lemma follows immediately from (1.8). 

3, N~cerrrry condttlonr for the sptfmiUty of the trrfrctory, 
Structure of the optimrl control. The sign oftheexpression u. = 
z. sin v. - y. Co9 qro determines the relative positions of the origin and the straight 
line (x - so) Sin cpo = (Y - Yo) cm rp0 (3*1) 
From the inequality o0 > 0 (oO < 0) it follows that the origin is to the left (to the 
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right) if we view from point Ms = (zs, ys) along the direction of vector vg. 
Let M (0, uzo (t)) be the optimal control and Mz = (Z (tr), I (tr)) be the 

first point of contact of the trajectory with the switching line. Using property 2” and 
the transversality condition (1.5). we can prove 

Lemma 3.1. Let o0 # 0, ur” (t) = sign uO, t E 10, tJ, then (a) on the arc 
&f&f, thereisnopoint other than M, *at which the velocity vector is directed to- 
ward the origin, (b) at point fifr the velocity vector is directed toward the origin and 
ux* (t) = 0, t E It,, Tl. 

Lemma 3.2. Under the hypotheses of Lemma 3.1 the optimal control function 
1.6,’ (t) does not switch.more than once and the sequence of values of us” (t) can only 
be one of the following: (--I), (I), (--1, 1). 

The proof, which we omit, relies on Lemma 2.1 and on relations (2.4) and (2.5). 
Using Lemmas 3.1 and 3.2 we can show the validity of the following theorems. 
Theorem 3.1. At no point, other than the initial one of the optimum trajectory, 

is the velocity vector directed away from the coordinate origin. The optimum control 
function ur” (t) does not switch more than twice,and the sequence of values of 4“ (t) 
can only be one of the following: for (JO # 0 (sign oo), either (sign uo, 0), 
(-- sign cfo, sign ~3, or (- sign co, sign cs,, 0), and for o. = 0 (0), either(+-), 
or (* 1,O). 

Theorem 3.2. The optimum control function us” (t) has no more than one 
switching, while the sequence of values of us0 (t) can only be one of the following: 
(--I), (3-i), (--1, +I). 

4. Certain propertfer of the functton *4(t). Let the control 
u, (t) = ua (t) = 1, t e It,, Tj satisfy the maximum principle. Then, having 
substituted (1.9) and (2.6) into (2. I), we have 

X&h 0) - X,9, (2’) E = u (t) cf, (rp* (t), a), t E it,, 2’1 (4.1) 

(II (q~* (t), a) = E (1 -E)cosa+2b{(2cosa-K-1sina)E- 

(2coa (I* + a) - R-l sin (cp* (t) + a)} 

V* 0) = it (T) - rp (t), E = exp (&J* (t)), a=9 - cp (0 

If t, = tz, and I/J* (2’) = 0 (tz is the switching instant for us), then 

@ (V(t,), o) = 0 (4.2) 

Definition. Let o. > 0. We say that the control (e (t), Us (t)), t cZ2 IO, 27 
belongs to class X if (a) this control satisfies the maximum principle and the transver- 
sality condition, (b) on the trajectory corresponding to this control there is no point 
other than the initial point,& which the velocity vector is directed away from the point 
(5 (T), Y (TN, (c) th e control functions u, and us take during the motion one of the 
following sequences of values: 

rt, : (O), U)t W), (--1, $3 0); u.,$ f-f), (1), (--I, I) 

If a control (%, us) belongs to class X and u, (t) = -1, t E f0, tJ, then 

us (t) = - 1, t E IO, t,l (4.3) 

Usinn Lemma 2.1, the vcit-plane, and the form of the derivatives %’ (t) and 94’” (t), 
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we can prove the validity of 
Lemma 4.1. Let the control 

belong to class X and let q, (ts) = 0, then on the interval [ts, 2’1 the function 
96 (t) increases strictly at first and then strictly decreases. 

6, Coartruction of li conttof from cirrr X. Usingsymmetryargu- 
ments it suffices to solve the problem for u0 > 0. The trajectory with control (r+ = 

f 1, Ug = 1) is called an acceleration trajectory, while with control (~1 = f 1, 
us = -1) , a deceleration trajectory. We reckon the controls from class X as right- 
continuous. 

Let us show that an instant T* > 0 exists such that for any T < F* the control 

u1(t) =ua(t) ===1, i?EfO,Tl (5.1) 

leading the representative point to the position (x (z), y (2)) satisfies the maximum 
principle. To do this we take the straight line 

(y - y (a))ex - (l - 5 (7))cs = 0, Cl = cos cp (7) (5.2) 
cs = sin cp (7) 

as the switching line. By q\loI (z, t) we denote the function 9, (t) computed for the 
switching line (5.2) and under the condition I@,~ (0, r) = 0. For small r , from(4.1) 
we have +a (7, t) > 0, t E i0, 7). Hence it follows that control (5. I) satisfies the 
maximum principle for small 7 and for the function ?#a (t) = tpIl (z, t) , We increase 
the instant z and determine the value of gp (‘5, 0). Let Z = X* be the smallest in- 
stant for which qoI (T *, 0) = 0. Relations (1.9) and (1.5) hold for any z < z* and 
for the switching line (5.2) ; consequently, control (5.1) satisfies the maximum princi- 
ple. 

We shall show that control (5.1) does not satisfy the maximum principle for z > z* 
and for the line (5.2). We assume the contrary. Then an instant ‘rl > 0 exists such 

that cp (@ - 9 (TV) = Q, (z*) - ~$0. In view of Lemma 4.1 and of equality(4.2) 
we have ?odl (7, t) > 0, t E (TV, T), qJlql (z, z1 - 0) < 0. Therefore,relatiom 
(1.9) and (1.5) cannot be fulfilled simultaneously when li > 7* . Q. E. D. 

We make the following construction. Wemovea certain time 7 > z* along an 
acceleration trajectory, and next a certain time TI - +r along line (5.2). From (1.4) 

we have % VI) = 1p4 (z) - TI + z. By choosing a sufficiently large interval 
[z, S”,l we can fulfill the inequality q4 (t) > 0, t ~3 [0, TJ , under the condition 

$4 (TJ x 0. From Lemma 4.1 it follows that in the case being examined we can 
find TIN (+@ = T I , namely. the smallest instant for which q4 (0) = q4 (T,,) = 0, 
94 (t) > 0, t E (0, Td We mark the point M, = (z (T,, (z)), y (T,, (z))). 
When z 6 T* we set T,, (z) = z. By varying z from zero to 70 (70 is the instant 
of intersection of the acceleration trajectory with the straight line (3, I)), we obtain a 
set of points {MT} which is a certain curve ylo on the half-plane being examined. 
Obviously.we can define curve ylo as follows, By qp4 (z, t) we denote the function 
$d (t) computed for the switching line (5.2) and under the initial condition q,r (7, 
0) = 0. We compute the value of ‘tpo (z, r). Let 94 (z, Z) > 0. Then, moving 
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along the switching line with the control (z+ = 0, ~2 = I), we determine the instant 

T,, (z) at which 94 (z, T,, (r)) = 0. We -rk the pO~t(~(T1*(7)), Y (TX* ('db 
If 1p4 (z, z) < 0, we set T,, (a-) = 7. The set of points {(z(T,,(z)), y (T&)))} 
is a curve yio on the halfplane being examined, which can be written in the parametric 
form 

Y,=YW +d(@ninqW, 2 =z(T) +~(z)cos~,(~) (5.3) 
d (7) = 2-‘K2 (T,, (4 - z)* + v (7) (T,, (z) - r) 

T&J - z = 
I 

G-l (H (4 - ZJ (q), H (z) > v (z) 
o 

H (T) = w co9 (; 
WKW 

- cp @I) + Gm-’ I (!/o - y (7)) cos 9 (T) - 
(x0 - 5 (TN sin cp (4 I 

Up to the point M* = (x W, El (?*)I th e curve ylo coincides with the accelera- 
tion trajectory, and then diverges from it. Using Lemma 4.1 and (4.1) we can prove that 
if 72 > ‘F; > 7 *, then d (?d > d (q). The curve yls divides the half-plane into 
two parts RIO (RIO C RIO) and rso (Fig. 1). 

Lemma 5.1. If the origin is located in region rlO, then the control 

h(t) = 
+I, tEIO, z), 

0, t E [T, Tl, 
us(t) = 1, t E [0, T] (5.4) 

(where T is the first instant at which the velocity vector is directed toward the origin) 
belongs to class X. 

Proof. Since on the interval[O,r] 
the trajectory is an arc of an untwin- 
ing spiral, the trajectory lies on one 
side of line (5.2)) i. e. the first rela- 
tion in ( 1.9) is fulfilled, while on the 
trajectory there is no point other than 
the initial point, at which the velocity 
vector is directed away from the ori- 
gin. To fulfill the second relation in 
(1.9) and the transversality condition 
(1.5) it is sufficient to choose the func- 

tion 94 W = $41 (G t) -941 k T), 

when r < T? and the function 9, (t)== 
$4 b, t) - (OI (r, T) when T> +. 

Fig. 1 

It turns out that control (5.1) does not satisfy the maximum principle for any z > r*. 
The validity of the next statement follows from this and from the construction of curve 

YlO 
Lemma 5.2. If control (4, us) belongs to class X, the point (5 (T), y (T)) 

is located in region r ao.and u1 (0) = i, then u2 (0) = -1. 
From point MO we issue a trajectory with control u1 (t) = 1, U2 (t) = -1, t E 

[O, s] , in the direction of vg . On this trajectory we denote by A the first point at 
which the normal to the trajectory passes through MO, and by B the first point at which 
the tangent to the trajectory passes through MO. Let the instant t = s, correspond to 
point A and the instant t = s_ to point B . For the point M, = (5 (s), II (S)) and 
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for the vector v (s), taken as the initial ones, we construct the curve yls analogous to 
curve yio and coinciding with it for s = 0. Varying (I Q s 6 s_, we obtain a set of 
curves yis. On each of these curves we single out the point (z ($*), y (zs*)) at which 
the curve ?I* diverges from the acceleration trajectory issued from point kf,. These 

points form a curve y20 (Fig. 1). From (4.2) we have 

cp tG*) - cp (8) = const (5.5) 

We draw a curve ~30, being the collection of first points B8 on curves yls, at which 

the velocity vector is directed toward MO. It is easy to see that the points E, can exist 

only for s E Is+, s_] ; the point E,_ coincides with B and the curve y30 passes 

through MO. In view of identity (5.5) the curves yss and y30 can intersect at a unique 
point which we denote E, * . The curve,consisting of the arcs M*E,* C YZO and 

E,*MoC Y30 cut3 out a region l-‘,, from I’s0 (Fig. 1). If point E,I does not exist, 
then curve yas separates region rso from rso . By virtue of the above argumentation 

related to the construction of region rso , the following lemma is valid. 
Lemma 5.3. If the origin is located in region rsn, the control 

(where ‘5 is the first instant at which the velocity vector is directed toward the origin, 
s (S < Z) is the first instant at which the curve yls passes through the origin) belongs 

to the class X. 
By D, we denote the region bounded by arcs of the curves yso, yso and by the seg- 

ment BMo (Fig. 1). by 0s the open region bounded by the deceleration arc MOB 

and the segment BMo, while ru, = r’s0 \ (r30 U D, U Da). We choose some 

trajectory L,, cunsisting of a deceleration arc MOM, : {(z (t), Y (r)), r E LO* Sl) 
and an acceleration arc M,O : ((5 (I), y (t)), t E [s, z], z < T,*}. Obviously, 
a trajectory L,, can hit any point of the region bo It can be shown that for any s 

and z E [s, T,*) for which (s (T), y ($) E r 4o we can, by choosing angle a , make 

the function @4 (t), computed for ci = cos (cp (z) + a) and cs = sin (cp (z) + 

a), q4 (z) = 0, satisfy the conditions: qr (s) = 0, qpl (t) > 0, t cz (s, T); I/+ (f) ( 
0, t E [O, s). Angle a is uniquely determined from Eq. (4.2) with ‘p* = cp (T) - 
cp (s) . If the trajectory L,, lies entirely on one side of the switch straight line defined 

by the angle 8 = cp (z) + a, we relate point (Z (T), Y (‘6)) to set S2 , otherwise, 

point (x (4, Y 6)) is referred to set s,. Since z < T,*, it is impossible to hit the 

origin 0 E S, by a control from class X, which would satisfy the condition ui (0) = 1. 
When 0 E D, U D, control (5.6) does not satisfy the maximum principle as well 
because the trajectory cannot lie on one side of the switch line. By I’SO we denote the 
set S, U D, f_j D2. It can be shown that I?SO is a simply-connected open region. 
The deceleration arc MoA and the arc MOE,. = yso C yso form a part of the 
boundary of region I’s0 . The remaining part of the boundary (we denote it ydo) jointly 
with arc yss possesses the property that when 0 E yso iJ yao the switch line defined 

by the angle cp (z) + a passes through MO. Let r’s0 = I’s0 \ I’so. By virtue of 
the argumentation related to the construction of regions l’s0 and rso and by the con- 
dition (4.3). the following lemmas are valid. 

Lemma 5.4. If the origin is in the region reo, the control (5.6) belongs to class 
X. 
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Lemma 5.5. If the origin belongs to the region r&0, the optimal control satis- 
fies the conditions ye (0) = -1, Q“ (0) = - 1. 

From Lemma 5.5 it follows that when 0 E I’MI 

%,” (1) = u2O (t) = -1, t E [O, El) (5.7) 

where tl is the first instant at which the curve (yru u y& ,i. e. the boundary of the 
region I’si%, constmcted for point (Z f&), y (tr)) taken as the initial point,passes 
through the coordinate origin. Region rstl is constructed analogously to region I’ao. 

Fig. 2 

Since u2 (tJ = -1 (see (4.3)),0 E rot,. 
In view of Lemma 5.4 the control 

Ul @I = 1 -1, tElt1, z) 
0, tE[z,T] (5*8) 

i 

- 1, 
% @) = 

.fE itI, 4 
+ 1, t E [s, T] 

(where s is the first instant at which the curve 
Yrs, constructed for the point (z (a), jj (S)) 
taken as the initial point, passes through the 

origin) belongs to class X. Since 0 E ystlU 
Y.w the switching line passes through the 
point (z (&), y ( tl)). Hence the first rela- 

tion in (1.9) is fulfilled on the whole interval LO, TJ . The second relation in (1.9) is 
fulfilled by virtue of equality (4.3). Thus when 0 E J?M) the control (5.7), (5.8) be- 
longs to class X. 

8, Ru 1 e 6. 1. At the initial instant we draw the straight line (3.1) and that half- 
plane in which the origin lies and we separate it into the regions rlo, rso, rso. We 
choose the control: (5.4) if 0 E Flo; (5.6) if 0 E: I’so; (5.7),(&Q if 0 E I?m 
(Fig. 2). From the preceding Section it follows that the control construeted by this rule 
belongs to class X. 

We make the following construction. We move under the control u, (t) = ns (t) = 
-1, t E IO, sJ, where sa is determined from the equation cp (ss) = cpo - n, 
and for each point (a: (t), y (t)) taken as the initial point, we construct the region 
rbi, t e [0, ss]. On the plane 00 > 0 these regions cover a certain region G1. Let 

G = J?sa fl G,. 
Theorem 6. 1. When 0 5 G the rule 6.1 determines the optimum control. 
Proof. By (Ur*, us*) we denote the control determined by the rule 6.1. In what 

follows we use an asterisk in the notation of all quantities relating to the control (ur*, 
us*) and a degree sign in those relating to the optimum control (%*, Use) . Let 0 E 
rl, and z.+* (0) = 1. Then, according to Theorem 3.1, the function u,” (t) has the 

form (5.4). We assume that Uz* (0) = --1. Since 0 E rxo, u?, necessarily switches 
at some instant tz . From (2.3) and (2.5) we have the equalities 

tiK2 I~\pIO(0) I =P(?h - 22~ (tz) + v (T“)) + 2%~ (c~%o+ ca*yo) (6.1) 

aK2 I %* K9 I = W, (m - 7.~ V,)) - =2 h*m + oz*sro) 
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We caneshow that 
c1 x~ + c2.643 < +.x0 + C2,&0 < ot H, = 21 f’&) > H”= v(T”) (6,2) 

J$ additiomfrom(l.1) we have z, (T,)--0 =K2T*, ZJ (T”) - 2v (ts) fvo= K,T”. 
Now, using inequalities (6.2), from (6.1) we obtain T”> T,, which is impossible. 
Thus, if 0 E I'IO and ~1’ (0) = 1, the control (5.4) is optimal . 

Let 0 E I’sa and ur* (0) = 1. From Theorems 3.1 and 3.2 and Lemma 5.2 it 
follows that @ad (t) = -1 until the curve VI8 passes through the origin. For the sub- 
sequent motion,as was shown above, %* (t) = 1. Thus,if 0 E rao and ur” (0) = 
1, the control (5.6) is optimal . 

We shall show that ur” (0) = 1 if 0 E I?IO U l?eo. We assume the contrary, i. e. 
%“(O) = -1. From Theorem 3.1 and equality (4.3) it follows that t” a switching in- 
stant for u&’ exists such that uz” (0) = -1 for t E IO, t”l and 0 E (~,p 1,’ 
ysre) C G1. Consew=tiy, 0 E l? BtO and control (5.8) is optimal with tr = t” , It 
is not difficult to show that me trajectory Lo cannot be optimal when 0 E Pro n G1 , 
Therefore, 0 E G, which contradicts the theorem’s hypothesis, The theorem is proved. 

It can be shown that if 0 E rao, then during the motion the origin gets first into the 
region rat and next into r,, . The origin cannot get into lYbt from region rcrr or into 
r,, from I;f. The rule 6.1 permits us to select the control at the initial instant. If a 
current time t is taken as being initial, we obatin a feedback control law 

u1 (t) = sign q, u2 (0 = I, 0 E rlf, of =i= 0 

ul (t) = sign of, u2 (t) = -1, 0 E rst, of # 0 

Ul (Q = -sign ot, uz (t) = -1, 0 E rsf, (fg + 0 
q(t) ==o, l&(t) =I, fit =o, %,CO 

a1 0) =&l, l&= 1 +I, 0 E rlf, 
-4 0 E rltr *f = 0, @lf > 0 

bt = x (t) sin ‘p (2) - y (t) cos cp (t), o,, = x (t) cos cp (i) + 

y 0) sin cp (t) 

Thus, we have synthesized a control from class X. According to Theorem 6.1 this con- 
trol is optimal when 0 iZ G. 
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